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SUMMARY

The use of L2 norm in defining environmental indexes is discussed. For each type of
L2 indexes a different type of regression of yield on environmental index is considered.
The indexes are chosen in order to minimize the sum of the sums of squares of residuals
for the regressions, there being a regression per variety. The special cases of linear
and cubic indexes are singled out as well as the general polynomial case. The first
of these cases constitutes an alternative to the classical Joint Regression Analysis in
which the environmental indexes of the different blocks are their average yields.
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1. Introduction

Joint Regression Analysis has been widely used, see Mooers (1921), Finlay and Wil-
kinson (1963) and Eberhart and Russel (1966), in comparing cultivars. Usually there
is a field network of random block designs, the environmental index for each block
being estimated, see Gusmaéo (1985), by it’s average yield. Linear regressions on these
indexes are then adjusted for the varieties. Recently, Mexia et al. (1997) proposed
that the environmental indexes for blocks should minimize the sum of the sums of
squares of the residuals. These indexes are already Lo indexes since Ly norm is used.
Despite they having been named quadratic indexes we now will refer to them as linear
L, indexes. In this way we are placing then inside a general class of environmental
indexes defined through the use of L norm. Each type of these indexes will corre-
spond to a type of regression. In what follows we will consider, first the linear, then
the cubic and lastly the general polynomial indexes.

*The paper was submitted on the occasion of 70-th birthday of Professor Tadeusz Califiski.
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2. Linear L, indexes

Let the j-th cultivar have yield y;; in the i-th block, i = 1,..,n, 7 = 1,...,J. We
intend to obtain environmental indexes 6;, i = 1, ...,n, such that the sum of the sums
of squares of residuals for the corresponding linear equations is minimal.

If we had the indexes vector x = (21, ..., z,)7 we would have the sum of sums of
squares of residuals

J
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where yo; = £ >, v;; and 79 = L 3°7 | 2,. Thus we will have to maximize
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Since h(ax+bl) = h(x) we can restrict ourselves to vectors x such that 337 | 22 =
1 and )77, x; = 0. It then may be shown, see Mexia et al. (1997), that the solution
is the first eigenvector «; of the matrix ‘a'dl with ¥ = [#55] and §i; = vij — yoj;
1=1,..,m;j=1,...,J. In most applications n exceeds J and it is convenient to start
by obtaining the first eigenvector v, of YTY since it is straightforward to show that

. . L
the corresponding eigenvalue \; is the same for both eigenvectors, one of YY  and
the other of YTY, and that

1 -~
o) = \/—/\'_1Y’Yl (3)

Once the linear Ly indexes are adjusted we can rescale them so that the minimum
and maximum linear L indexes are equal to the minimum and maximum classical
indexes.

In the field network we are going to consider, there were eleven four random block
designs and the cultivars: CELTA, HELVIO, TE9006, TE9007, TE9008, TE9110,
TE9115, TE9204 and TROVADOR were compared. In Table 1 we present the results
obtained using the classical and the rescaled linear Ly indexes.

The sums of squares of residuals were 2147355764 for the classical and 21292241572
for the linear L, indexes.

In Figures la and 1b we present the two sets of adjusted regressions.

In each case the upper contour of the regression lines is a polygonal, the cultivars
whose regressions belong to the upper contour being dominant. Ordering the cultivars
according to their decreasing slopes let the i-th cultivar, with adjusted regression
of + B;x, be dominant in range [c;; d;]. Now, see Mexia et al. (1997), we can carry
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Table 1. Adjusted regressions

. Classical indexes Linear L, indexes
Cultivar
a* ﬁ* RZ a* ﬁ* R2

CELTA -462.19476 1.22745 0.90745 -538.25422 1.24364 0.91838
HELVIO -101.95424  1.04521 0.92415 -148.15485 1.05487  0.92801
TE9006 -351.26111 1.09817 0.86267 -409.17417 1.11040 0.86953
TE9007 -480.25999  1.10783 0.91716 -537.35932 1.11987 0.92397
TE9008 411.56732  0.94378  (0.89990 380.94742  0.95004 0.89898
TE9110 -42.59616 0.88260 0.78279 -32.64602 0.87988  0.76698
TE9115 1166.65400 0.56949  0.54980 1227.34924  0.55568 0.51606
TE9204 67.32710  1.06924  0.89540 20.56182 1.07901 0.89895
TROVADOR  -207.28216 1.05622 0.89297 -249.08800 1.06490 0.89487
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Figure la. Joint linear regression with classical indexes
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Figure 1b. Joint linear regression with L2 indexes
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out right-sided ¢-tests to compare this dominant cultivar with the others. Let x1,...,Z5
be the environmental indexes (classical or L linear) and S, ..., Sy the sums of squares
of residuals, with zo = L "0 | z;, 820 = 3 i, (z; — 70)? and
1 (:L‘o - u)2
k(u) ==+ ——.
(w) ==+ ~ (4)
The test statistics are
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n—2

and are based on 2(n — 2) degrees of freedom. In the case of our exemplary data this
technique led us to results given in Table 2.
Thus the Ly linear indexes present a slightly better separation power.

Table 2. Dominant and dominated cultivars

Classical indexes Linear Lo indexes
Dominant Dominance Dominated Dominant Dominance Dominated
range range
TE9007
3346 8399; TES007 [3394.3623 TE006
CELTA [3346.8399; TROVADOR  CELTA “7  TROVADOR
8838.4922] 8838.4922)
TE9110 TE9110
TE9115
2743.8491; TE9007 [2794.2819; TES007
TE9204 [ ’ ' TE9006 TE9204 ’ ' TE9006
. 3346.8399] 3394.3623]
TE9110 TE9110
. ; 2212.5922; TE9007
TE9008 [2212.5922; TE9007 TE9008 [ 92 900

2743.8491] TE9110 2794.2819] TE9110
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3. Polynomial Ly indexes

3.1. Adjustment

We now adjust polynomial regressions. If k—1 is their degree we will have k coefficients
per regression. _
With x = (xl, oy @) let x0) = (2, ..., 20)T, § = 0,1, ..., and € (x) be the range

space of |x(@:.. :=x(*=1| Given the vectors y1, ...,y of cultivar yields we want to

minimize the sum of the sums of squares of the residuals for polynomial regressions.
We point out that we are minimizing a function of the vector x of environmental
indexes, that for, each such vector X = (Z1,...,%,)7T, the adjusted coefficient vectors
are

B;(%) = (Xk®) T Xe(®)) " Xp(®)Tyj, G =1,...,J, (6)

and that the sum of the sums of squares of residuals is

J n k 2
5® = 3% (yi,- _ zﬁjxms-l)
j=11i=1 =1
n J k 2
= ZE(Z”” Zﬁal(x 5 1) . (7)

This last expression suggests an algorithm to carry out the minimization of Sy ().
We start by takmg as environmental indexes vector the vector of classical indexes %; -
and obtain the ,6 (#1), 5 =1, ..., J. Next we minimize separately

J ko 2

> (-2 pueety
i=1 =1

treating it as a function of z;;, ¢ = 1,...,n. We thus obtain the components of a

new vector which we rescale in order to have the same range for the environmental

indexes. With Xy, the rescaled vector, we enter the second iteration and repeat this

procedure till the sums of squares of residuals stabilize.

In order to avoid numerlcal problems it may be convenient to substitute the y;,
j=1,.,J by the y; = yJ, j= .»J, 5o that all components are in the range
[0;1]. Once the adJustment is carrled through the final sum of squares of residuals has
to be multiplied by ¢ and the I-th components of the adjusted coefficient vectors by

¢ il=1,.,k

Smce Qk (ax+b1) = Qk(z) we could restrict ourselves to vectors with 3" | 22 = 1
and so, according to the Weierstrass theorem, Si(X) has always a minimum.
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83.2. Model validation

The possibility of adjusting environmental indexes of increasing degrees enables us
to validate the choice of degree. Namely, it may be interesting to validate the use of
linear quadratic indexes since these are easy to interpret. To validate the use of h— 1
degree indexes we can, with A < k, carry out adjustments both for the A — 1 and the
k—1 degree indexes. For the validation of the linear indexes, h = 2, we may consider
taking k = 4 since, as an alternative to a linear response to the environmental index,
we could think of a response curve with a range of increasing returns followed by a
decreasing returns range. Both ranges would be separated by an inflexion point and
k —1 =3 is the lowest degree for which such points exist.

Let X be the vector of the k degree adjusted environmental indexes. To test if
the last & — h coeflicients are null for all cultivars we have the F' test with statistic

_ (= 1) $1®) ~ S8) ©
J(k—h) Sk(X)
with J(k — h) and J(n — h) degrees of freedom.
In the example we are considering we get Sp(X) = 21292241572, S4(X) = 17440482366

and F' = 4.42 with 8 and 360 degrees of freedom. Thus F is very highly significant
and it may be worthwhile to pursue the study as we are presently doing.

F
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‘Wskazniki $rodowiskowe typu Lo

STRESZCZENIE

Dyskutowane jest wykorzystanie normy Lo do definiowania wskaznikéw §rodowisko-
wych. Dla kazdego typu wskaznika rozwaza sie inny typ regresji wzgledem rodowiska..
Wskazniki sg dobrane tak aby minimalizowaly sume sum kwadratéw dla bledéw w
regresji dla poszczegélnych odmian. Wyrézniono szczegélne przypadki wskaznikéw
liniowych i kwadratowych oraz ogélny typ wskaZznikéw wielomianowych. Pierwszy z
tych przypadkéw stanowi alternatywe dla klasycznej regresji w ktérej wskaznikami
srodowiskowymi sg $rednie plony odmian w $rodowiskach.

SLOWA KLUCZOWE: norma Lg; wskazniki srodowiskowe, analiza wspélnej regresji



